Journal of Mathematical Chemistry, Vol. 43, No. 1, January 2008 (© 2006) DOI: 10.1007/s10910-006-9177-7

The exponent in the general Randić index

Lane Clark

Department of Mathematics, Southern Illinois University Carbondale, Carbondale IL 62901-4408, USA

Ivan Gutman*

Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia E-mail: gutman@kg.ac.yu

Received 16 June 2006; revised 28 June 2006

We determine conditions for the parameters *n* and δ , for which the general Randić index R_{δ} is not an acceptable index of branching of n-vertex trees, i.e., for which the *n*-vertex star and the *n*-vertex path have not extremal R_{δ} -values among all *n*-vertex trees. Analogous results are established also in the case of *n*-vertex chemical trees. Numerous other results for the general Randić index of trees and chemical trees are obtained.

KEY WORDS: Randić index, connectivity index, general Randić index, molecular branching

AMS SUBJECT CLASSIFICATION: 05C07

1. Introduction

There is no general agreement of how to measure "branching" of organic molecules whose molecular graphs are trees [1–7]. Nevertheless, there seems to be a general agreement in mathematical chemistry that, if χ is an acceptable index of branching of trees, then, at the worst,

$$\chi(K_{1,n-1}) \leqslant \chi(T_n) \leqslant \chi(P_n) \quad \text{for all trees } T_n \neq K_{1,n-1}, P_n, \tag{1}$$

i.e., $\chi(K_{1,n-1})$ and $\chi(P_n)$ are the minimum and maximum values of $\chi(T_n)$ though possibly not uniquely, and more universally,

$$\chi(K_{1,n-1}) < \chi(T_n) < \chi(P_n) \quad \text{for all trees } T_n \neq K_{1,n-1}, P_n, \tag{2}$$

i.e., $\chi(K_{1,n-1})$ and $\chi(P_n)$ are the unique minimum and maximum values of $\chi(T_n)$.

*Corresponding author.

Observe that necessary condition (2) implies necessary condition (1). Throughout the paper, $K_{1,n-1}$ is the star of order *n* and P_n is the path of order *n*.

Randić [8] introduced the index

$$R_{\delta}(T) = \sum_{uv \in E(T)} \left(d_T(u) d_T(v) \right)^{\delta}$$

of a tree *T*. To preserve rankings of certain organic molecules, the index had to satisfy seven crucial inequalities. He stated that both $\delta = -0.5$ and $\delta = -1$ satisfied these inequalities and eventually chose $\delta = -0.5$. Since that time, $R_{-0.5}$ has come to be known as the Randić index and R_{δ} as the general Randić index [9]. The general Randić index with $\delta = -0.5$, and to some extent with $\delta = -1$ and $\delta = +1$, has been extensively used as a measure of branching of trees. Several hundred papers and several books have been written about this index for $\delta = -0.5, -1, \text{ and } +1$; for details (see [9]).

In table 1, we summarize the current state of knowledge regarding the minimum and maximum values of R_{δ} for $\delta \in |-\{0\}$. From table 1, we see that:

- (1) R_{δ} does not satisfy the bounds in (1), hence not in (2), and therefore is not an acceptable index of branching of trees for $\delta \in (0, \infty)$.
- (2) R_{δ} does not satisfy the upper bound in (1), hence not in (1), and therefore is not an acceptable index of branching of trees for $\delta \in (-\infty, -2]$.
- (3) R_{δ} satisfies (2), hence in (1), and possibly is an acceptable index of branching of trees for $\delta \in [-0.5, 0)$.

Hence, only $\delta \in (-2, -0.5)$ needs to be examined.

In section 2, we give trees $T_n(\forall n \ge 24515)$ with $R_{-\delta}(T_n) > R_{-\delta}(P_n)$ for all $-\delta \in [-2, -0.82179]$ (see theorems 7 and 9). Hence, $R_{-\delta}$ is not an acceptable index (1 so 2) of branching of trees for all $-\delta \in (-\infty, -0.82179]$ (see corollary 12).

We also prove the existence of critical values $-0.817268757 \le -\alpha \le -\beta \le -0.5$ where: $R_{-\delta}$ does not satisfy (1 so 2) for all $-\delta \in (-2, -0.817268757)$ and for all $n \ge 24515$;

δ	$\min R_{\delta}(T_n)$	$\max R_{\delta}(T_n)$
$(-\infty, -2]$	$\forall \delta \in (-\infty, 0)$	$w_{\delta}(T_n) < w_{\delta}(SS_n), \forall T_n \neq SS_n, n \ge 7[10]$
(-2, -0.5)	$R_{\delta}(T_n) > R_{\delta}(K_{1,n-1})$	unknown; see theorems 7 and 9: $\exists T_n \neq P_n$ with
	$\forall T_n \neq K_{1,n-1}, n \ge 5[11]$	$R_{\delta}(T_n) > R_{\delta}(P_n), \forall n \ge 24515$ and
	,	$\forall \delta \in (-2, -0.82179)$
[-0.5, 0)		$R_{\delta}(T_n) < R_{\delta}(P_n), \forall T_n \neq P_n, n \ge 7[10]$
(0, 1]	$\forall \delta \in (0,\infty)$	$R_{\delta}(T_n) < R_{\delta}(K_{1,n-1}), \forall T_n \neq K_{1,n-1}, n \ge 2?[10]$
(1, 2)	$R_{\delta}(T_n) > R_{\delta}(P_n)$	$R_{\delta}(T_n) < R_{\delta}(S_n), \forall T_n \neq S_n, n \ge 8?[10]$
$[2,\infty)$	$\forall T_n \neq P_n, n \ge 5[11]$	$R_{\delta}(T_n) < R_{\delta}(BDS_n) \forall T_n \neq BDS_n, n \ge 8[10]$

Table 1

 $R_{-\delta}$ does not satisfy (1) for a dense set of $-\delta \in (-0.817268757, -\alpha)$ and all $n \ge N(\delta)$;

 $R_{-\delta}$ satisfies (1) for all $-\delta \in (-\alpha, 0)$ and for all $n \ge 7$;

 $R_{-\delta}$ does not satisfy (2) for a dense set of $-\delta \in (-0.817268757, -\beta)$ and all $n \ge N(\delta)$;

 $R_{-\delta}$ satisfies (2) for all $-\delta \in (-\beta, 0)$ and for all $n \ge 7$.

Hence, $R_{-\delta}$ changes from, not being to possibly being, an acceptable index (1 or 2) of branching of trees at $-0.817268757 \le -\alpha \le -\beta \le -0.5$ (respectively); see corollaries 3, 6 and theorems 7,9, 11. figure 1 displays much of this information.

Evidently finding the values of $-\alpha$, $-\beta$ is of interest. We conjecture that $-\alpha = -\beta \approx -0.8$. If the conjecture is true, then the choice of -0.5 by Randić was rather fortuitous. It is likely that $R_{-\delta}$ satisfies the necessary condition (2) to be an acceptable index of branching for all $-\delta \in [-\alpha, -\beta]$, so for all $-\delta \in [-\alpha, 0)$.

We also have analogous results in section 3 for chemical trees (maximum degree at most 4).

It is convenient to write $\delta \in (-\infty, 0)$ as $-\delta$ where $\delta \in (0, \infty)$, so that

$$R_{-\delta}(T) = \sum_{uv \in E(T)} \frac{1}{(d_T(u)d_T(v))^{\delta}}$$

with $\delta \in (0, \infty)$. With regard to extreme values of $R_{-\delta}(T)$, only the maximum value of $R_{-\delta}(T)$ for $\delta \in (0.5, 2)$ needs to be examined. We write \forall for "for all", \exists for "there exists" and f_x for the partial derivative of the function f with respect to x.

In table 1, T_n denotes any tree of order n; SS_n denotes the subdivided star of order n of [10]; BDS_n denotes the balanced double star of order n of [10] and S_n denotes the star or balanced double star of order n of [10].

•			
-0.82179 -0.8172	268757 — <i>O</i>	κ – μ	3 -0.5 0
↑	↑	↑	↑
$\exists R_{-\delta}(T_n) R_{-\delta}(P_n)$	in $(-0.82179, -\alpha)$:	$\forall -\delta \in (-\alpha, -\beta):$	$\forall - \delta \in (-\beta, 0)$:
$\forall -\delta \in (-2, -0.82179)$	$\forall \mathcal{E} > 0,$	$R_{-\delta}(T_n) \le R_{-\delta}(P_n)$	$R_{-\delta}(T_n) < R_{-\delta}(P_n)$
$\forall n \ge 24515$	$\exists \delta \in (\alpha, \alpha + \varepsilon)$	$\forall T_n \neq P_n, \forall n \geq 2$	$\forall T_n \neq P_n, \forall n \geq 7$
	$\exists N(\delta), \forall n \ge N(\delta)$		
	$\exists R_{-\delta}(T_n) > R_{-\delta}(P_n)$		

Figure 1.

2. Trees

For $n \ge 2$, let

$$A(n) = \{\delta \in (0, 2) : \exists R_{-\delta}(T_n) > R_{-\delta}(P_n), T_n \neq P_n\},\$$

$$B(n) = \{\delta \in (0, 2) : \exists R_{-\delta}(T_n) \ge R_{-\delta}(P_n), T_n \neq P_n\},\$$

$$C(n) = \{\delta \in (0, 2) : \exists R_{-\delta}(T_n) = R_{-\delta}(P_n), T_n \neq P_n\}.\$$

By their definition, A(n), $C(n) = B(n) - A(n) \subseteq B(n)$. From [12] (see Remark 8(1)), $1 \in A(n) \subseteq B(n)$ for all $n \ge 22$. By Hu et al. [10],

$$A(n), B(n), C(n) \subseteq (0.5, 2) \quad \text{for all } n \ge 7.$$
(3)

By the completeness the real numbers,

$$\alpha(n) = inf A(n)$$
 and $\beta(n) = inf B(n)$

exist for all $n \ge 22$. From their definitions, $\alpha(n) \ge \beta(n)$.

We first show that $\{A(n)\}_{n \ge 22}$ is a non-decreasing sequence of non-empty sets.

Theorem 1. $1 \in A(n) \subseteq A(n+1)$ for all $n \ge 22$.

Proof. Suppose $\delta \in A(n)$ so that $R_{-\delta}(T_n) > R_{-\delta}(P_n)$ for some tree $T_n \neq P_n$ where $n \ge 22$. Let $uv \in E(T_n)$ with $d_{T_n}(v) = 1$ and set $T_{n+1} = T_n + vw$ where w is a new vertex. Since $n \ge 3$, $d_{T_n}(u) \ge 2$. Then

$$R_{-\delta}(T_{n+1}) = R_{-\delta}(T_n) - \frac{1}{(d_{T_n}(u))^{\delta}} + \frac{1}{(2d_{T_n}(u))^{\delta}} + \frac{1}{2^{\delta}}$$

> $R_{-\delta}(P_n) - \frac{1}{(d_{T_n}(u))^{\delta}} + \frac{1}{(2d_{T_n}(u))^{\delta}} + \frac{1}{2^{\delta}}$
= $\frac{n-3}{4^{\delta}} + \frac{2}{2^{\delta}} - \frac{1}{(d_{T_n}(u))^{\delta}} + \frac{1}{(2d_{T_n}(u))^{\delta}} + \frac{1}{2^{\delta}}$

This last quantity is

$$\geq \frac{n-2}{4^{\delta}} + \frac{2}{2^{\delta}}$$

$$\Leftrightarrow \frac{1}{4^{\delta}} + \frac{1}{(2d_{T_n}(u))^{\delta}} + \frac{1}{2^{\delta}} \geq \frac{1}{(d_{T_n}(u))^{\delta}}$$

$$\Leftrightarrow (d_{T_n}(u))^{\delta} + 2^{\delta} + (2d_{T_n}(u))^{\delta} \geq 4^{\delta}$$

which is true since $d_{T_n}(u) \ge 2$. Then $\delta \in A(n+1)$ so that $A(n) \subseteq A(n+1)$. \Box

Corollary 2. $\alpha(n) \ge \alpha(n+1)$ for all $n \ge 22$.

Proof. For all $n \ge 22$, $\alpha(n) = \inf A(n) \ge \inf A(n+1) = \alpha(n+1)$ since $A(n) \subseteq A(n+1)$.

We next show that the sequence $\{\alpha(n)\}_{n \ge 22}$ has a real limit.

Corollary 3. $\lim_{n\to\infty} \alpha(n) = \alpha$ exists and $\alpha \in [0.5, 1]$.

Proof. By Clark and Moon [12] and corollary 2, $\alpha(n)$ is a non-increasing sequence of real numbers in the interval (0.5, 1] for all $n \ge 22$. By the completeness of the real numbers, the limit α exists. Consequently, $\alpha \in [0.5, 1]$.

The proof of theorem 1 with ">" replaced with " \ge " shows that $\{B(n)\}_{n \ge 22}$ is a non-decreasing sequence of nonempty sets. corollaries 5 and 6 immediately follow.

Theorem 4.
$$1 \in B(n) \subseteq B(n+1)$$
 for $n \ge 22$.

Corollary 5.
$$\beta(n) \ge \beta(n+1)$$
 for all $n \ge 22$.

Corollary 6. $\lim_{n\to\infty} \beta(n) = \beta$ exists and $\beta \in [0.5, 1]$.

Necessarily, $\beta \leq \alpha$. We now improve the upper bound for α .

For each end-vertex v of $K_{1,r}(r \ge 1)$, append three disjoint paths P_1, P_2, P_3 of order 3 having end-vertices w_1, w_2, w_3 , respectively, by identifying v and w_1, w_2, w_3 . Denote the resulting tree by T_r . Then T_r has order 7r + 1 and

$$R_{-\delta}(T_r) = \frac{r}{(4r)^{\delta}} + \frac{3r}{8^{\delta}} + \frac{3r}{2^{\delta}}.$$
(4)

For each end-vertex v_1, \ldots, v_k ($1 \le k \le 6$) of T_r ($r \ge 2$), append vertex disjoint paths P_1, \ldots, P_k of order 2 having end-vertices w_1, \ldots, w_k , respectively, by identifying v_1 and w_1, \ldots, v_k and w_k . Denote the resulting tree by $T_{r,k}$. Then $T_{r,k}$ has order 7r + k + 1 and

$$R_{-\delta}(T_{r,k}) = R_{-\delta}(T_r) + \frac{k}{4^{\delta}}.$$
(5)

We write $T_r = T_{r,0}$, which is consistent with (4). These trees were introduced in [12].

Theorem 7. For each $n \ge 24515$, there exists a tree T_n with

$$R_{-\delta}(T_n) > R_{-\delta}(P_n)$$

for all $\delta \in [0.82179, 1.95]$ where $0.82179 = \delta^*$ is the real solution of $3 + 3 \cdot 4^{\delta} - 7 \cdot 2^{\delta} = 0$.

Proof. For n = 7r + k + 1 $(0 \le k \le 6)$, let

$$\begin{aligned} a(r,k,\delta) &= R_{-\delta}(T_{r,k}) - R_{-\delta}(P_n) \\ &= \frac{r}{(4r)^{\delta}} + \frac{3r}{8^{\delta}} + \frac{3r}{2^{\delta}} + \frac{k}{4^{\delta}} - \frac{7r + k - 2}{4^{\delta}} - \frac{2}{2^{\delta}} \\ &= \frac{r}{(4r)^{\delta}} + \frac{3r}{8^{\delta}} + \frac{3r}{2^{\delta}} - \frac{7r - 2}{4^{\delta}} - \frac{2}{2^{\delta}} \\ &= \frac{r2^{\delta} + r^{\delta+1}(3 + 3 \cdot 4^{\delta} - 7 \cdot 2^{\delta}) + r^{\delta}(2^{\delta+1} - 2^{2\delta+1})}{(8r)^{\delta}} = a(r, 0, \delta). \end{aligned}$$

Set $b(r, \delta) = a(r, 0, \delta)$. Then b is real-valued and infinitely differentiable as a function of $r \in [0, \infty)$ and as a function of $\delta \in [0, \infty)$. We only consider $r \in \{1, 2, ...\}$ and $\delta \in [0.5, 2]$. Then

$$b_{\delta}(r,\delta) = -\frac{r\ln 4r}{(4r)^{\delta}} - \frac{9r\ln 2}{8^{\delta}} - \frac{(3r-2)\ln 2}{2^{\delta}} + \frac{(14r-4)\ln 2}{4^{\delta}}$$
$$= \frac{\ln 2}{8^{\delta}} \{2^{\delta}(14r-4) - 9r - 4^{\delta}(3r-2)\} - \frac{r\ln 4r}{(4r)^{\delta}}$$
$$= c(r,\delta) - \frac{r\ln 4r}{(4r)^{\delta}}$$

and

$$c_{\delta}(r,\delta) = \frac{\ln^2 2}{4^{\delta}} \{ (14r - 4) - 2^{\delta}(6r - 4) \}.$$

Fix $r \ge 2$. Let $\delta_1(r) = \log_2 \frac{7r-2}{3r-2}$ be the real solution of $(14r-4) - 2^{\delta}(6r-4) = 0$. We note that $\delta_1(2) = \log_2 3 = 1.5x$ and $\delta_1(r) \downarrow \log_2 \frac{7}{3} = 1.22239$ as $r \to \infty$. Then $c_{\delta}(r, \delta) > 0$ for $\delta \in [0.5, \delta_1(r))$ and $c_{\delta}(r, \delta) < 0$ for $\delta \in (\delta_1(r), 2]$. Hence, $c(r, \delta)$ increases for $\delta \in [0.5, \delta_1(r))$ and decreases for $\delta \in (\delta_1(r), 2]$.

Note that

$$c(r, 0.5) = \frac{\ln 2}{2\sqrt{2}} \left\{ (14\sqrt{2} - 15)r - (4\sqrt{2} - 2) \right\}$$

= 1.17606 r - 0.896165 > 0, c(r, 1.95)
= 0.00368746 r + 0.173071 and c(r, 1.97) = -0.00227256 r
+ 0.17321 (< 0 for $r \ge xx$).

Consequently,

$$b_{\delta}(r,\delta) = c(r,\delta) - \frac{r\ln 4r}{(4r)^{\delta}} \ge c(r,\ 1.95) - \frac{r\ln 4r}{(4r)^{\delta}}, \quad (\forall r \ge 2, \forall \delta \in [0.5,\ 1.95])$$

Let $\delta^* = 0.82179...$ be the real solution of $3 + 3 \cdot 4^{\delta} - 7 \cdot 2^{\delta} = 0$. Now

$$\frac{\ln 4r}{16r} \leqslant \frac{r \ln 4r}{(4r)^{\delta}} \leqslant \frac{r^{0.1/821} \ln 4r}{4^{0.82179}} \quad \text{for } \delta \in [0.82179, 2].$$

Hence, $b_{\delta}(r, \delta) \ge c(r, 1.95) - \frac{r^{0.17821 \ln 4r}}{4^{0.82179}} = d(r)(\forall r \ge 2, \forall \delta \in [0.82179, 1.95]).$ Note that $d(r) \ge d(3502) = 0.00226825$ for all $r \ge 3502$. Then, for each $r \ge 3502, b(r, \delta)$ increases for $\delta \in [0.82179, 1.95]$, hence, $b(r, \delta) \ge b(r, 0.82179) = 0.320061r^{0.17821} - 0.491357 > 0$ for all $\delta \in [0.82179, 1.95]$. Since $a(r, k, \delta) = b(r, \delta)$ $(0 \le k \le 6), a(r, k, \delta) > 0$ for all $\delta \in [0.82179, 1.95]$ and all $n \ge 24515$.

Remark 8.

- (1) We note that $a(r, k, 1) = a(r, 0, 1) = \frac{r-2}{8} > 0$ for $r \ge 3$ and $0 \le k \le 6$.
- (2) Obviously the trees $T_{r,k}$ and the function $a(r.k, \delta)$ give much more information about the maximum of $R_{-\delta}$ than indicated in theorem 1. We conjecture that the trees $T_{r,k}$ are the maximum trees for some interval of $-\delta$ centered at -1.
- (3) Clearly the bound $n \ge 24515$ can be improved.

We now cover the gap (1.95, 2) in theorem 7. theorems 7 and 9 together cover the previously unknown range $\delta \in (0.5, 2)$. (See table 1)

Let n = 3r + s where $0 \le s \le 2 \le r$. For each vertex v of the path P_r , append a disjoint path P of order 3 having end-vertex w by identifying v and w. Denote the resulting chemical tree by $T_{r,s}^{\text{chem}}$. Join s new endvertices to any s endvertices of $T_{r,s}^{\text{chem}}$. Denote the resulting chemical tree by T_n^{chem} which has order n.

Theorem 9. For each $n \ge 15000$, there exists a chemical tree T_n^{chem} with

$$R_{-\delta}(T_n^{\text{chem}}) > R_{-\delta}(P_n)$$

for all $\delta \in [0.8292, 2]$.

Proof. Let n = 3r + s with $0 \le s \le 2 \le r$ and $T_{r,s}^{\text{chem}}$ and T_n^{chem} be the chemical trees defined before the theorem. Then

$$e(r, s, \delta) = R_{-\delta}(T_n^{\text{chem}}) - R_{-\delta}(P_n) = \frac{r-3}{9^{\delta}} + \frac{r}{6^{\delta}} + \frac{r}{2^{\delta}} - \frac{n-s-5}{4^{\delta}} - \frac{2}{2^{\delta}}.$$

$$\geq \frac{r\{(4/9)^{\delta} + (2/3)^{\delta} + 2^{\delta} - 3 - 2^{\delta+1}/r\}}{4^{\delta}} = f(r, \delta).$$

Let $\delta^* = 0.826077...$ be the real solution of $(4/9)^{\delta} + (2/3)^{\delta} + 2^{\delta} - 3 = 0$. For $r \ge 5000$, and $\delta \in (0, 2]$,

$$f(r,\delta) \ge \frac{r\{(4/9)^{\delta} + (2/3)^{\delta} + 2^{\delta} - 1876/625\}}{4^{\delta}} = g(r,\delta).$$

Note that $h(\delta) = (4/9)^{\delta} + (2/3)^{\delta} + 2^{\delta} - 1876/625$ is an increasing function of $\delta \in (0, 2]$ and that h(0.8292) = 0.0000417744. Then $g(r, \delta) \ge g(5000, 0.8292) = 0.066168603$ for all $r \ge 5000, \delta \in (0.8292, 2]$. Consequently, $e(r, s, \delta) \ge f(r, \delta) \ge g(5000, 0.8292)$ for all $r \ge 5000, 2 \ge s \ge 0, \delta \in (0.8292, 2]$. This implies our result.

Remark 10.

- (1) We can replace 0.8292 with any $\delta > \delta^*$ and the theorem holds for all sufficiently large *n*. Our choice struck a balance between small δ and the resulting large *n*.
- (2) Clearly the bound $n \ge 15,000$ can be lowered.
- (3) Appending two disjoint paths of order 3 at each vertex of the path P_r gives the real solution $\delta^{**} = 0.83251...$ of $1 + 2^{\delta+1} + 2^{3\delta+1} 5 \cdot 2^{2\delta} = 0$ which is larger than δ^* , i.e., this class of trees is worse than the class of trees considered in theorem 9.

We further improve the upper bound for α .

Theorem 11. $0.5 \le \beta \le \alpha \le 0.817268757$.

Proof. With the trees $T_{r,k}$ and function $g(r,\delta) = f(r,0,\delta)$ of Theorem 7, we have $g(30, 0.817268757) = 5.08062 \times 10^{-7}$ which gives the optimal value $\overline{\delta} = 0.817268757$ for the class of trees $T_{r,k}$. Then $\overline{\delta} \in A(211) \subseteq B(211)$, hence, $\beta(211) \leq \alpha(211) \leq \overline{\delta}$. Since the sequences $\{\alpha(n)\}_{n \geq 22}, \{\beta(n)\}_{n \geq 22}$ are non-increasing, $\beta \leq \alpha \leq \overline{\delta}$.

Summary

We summarize the results of this section regarding necessary conditions (1) and (2). We have

$$[0.82179, 2) \subseteq A(n) \subseteq A(n+1) \subseteq \bigcup_{n \ge 24515} A(n) \subseteq [\alpha, 2) \subseteq [0.5, 2) \text{ for all } n \ge 24515,$$

$$[0.82179, 2) \subseteq B(n) \subseteq B(n+1) \subseteq \bigcup_{n \ge 24515} B(n) \subseteq [\beta, 2) \subseteq [0.5, 2) \text{ for all } n \ge 24515,$$

where

$$0.5 \leq \beta \leq \alpha \leq 0.817268757.$$

For all $n \ge 24515$ there exists a tree T_n (theorem 7) with

$$R_{-\delta}(T_n) > R_{-\delta}(P_n) \tag{6}$$

for all $-\delta \in [-1.95, -0.82179]$, and, for all $n \ge 15000$ there exists a chemical tree T_n^{chem} (theorem 9) with

$$R_{-\delta}(T_n^{\text{chem}}) > R_{-\delta}(P_n) \tag{7}$$

for all $-\delta \in [-2, -0.8292]$. From the definition of A(n), B(n),

$$R_{-\delta}(T_n) \leqslant R_{-\delta}(P_n), \quad \forall T_n \neq P_n$$
 (8)

for all $n \ge 2$ and all $-\delta \in (-\alpha, -0.5)$, and, more importantly,

$$R_{-\delta}(T_n) < R_{-\delta}(P_n), \quad \forall T_n \neq P_n$$
(9)

for all $n \ge 2$ and all $-\delta \in (-\beta, -0.5)$. The **mere existence** of β gives result (8). Both $(-\beta, -0.5) \subseteq (-\alpha, -0.5)$ may be empty, however.

Corollary 12. (1) $R_{-\delta}$ is not an acceptable index (not 1 so not 2) of branching of trees for all $-\delta \in (-\infty, -0.82179]$ and (2) $R_{-\delta}$ satisfies necessary condition (2) so (1) to be an acceptable index of branching of trees for all $-\delta \in (-\beta, 0)$.

The values of $-\alpha$ and $-\beta$ are important, since they are measures of when $R_{-\delta}$ ceases to be an acceptable index (1 or 2) of branching for trees. We have some evidence for the following conjecture.

Figure 2.

Conjecture 13. $-\alpha = -\beta \approx -0.8$.

If this conjecture is true, then the choice of -0.5 by Randić was rather fortuitous. We next show that $C(n) \neq \phi$ for all $n \ge 1303$.

Theorem 14. For all $n \ge 1303$, there exists $\lambda(n) \in C(n) \cap [0.75, 0.82179]$.

Proof. We use the trees and functions from theorem 7. For $n = 7r + k + 1(0 \le k \le 6)$,

$$f(r, k, \delta) = R_{-\delta}(T_{r, k}) - R_{-\delta}(P_n)$$

= $\frac{r}{(4r)^{\delta}} + \frac{3r}{8^{\delta}} + \frac{3r}{2^{\delta}} - \frac{7r - 2}{4^{\delta}} - \frac{2}{2^{\delta}}$
= $\frac{r2^{\delta} + r^{\delta+1}(3 + 3 \cdot 4^{\delta} - 7 \cdot 2^{\delta}) + r^{\delta}(2^{\delta+1} - 2^{2\delta+1})}{(8r)^{\delta}} = f(r, 0, \delta).$

Set $g(r, \delta) = f(r, 0, \delta)$. Recall that $\delta^* = 0.82179$ is the real solution of $3 + 3 \cdot 4^{\delta} - 7 \cdot 2^{\delta} = 0$. Then $g(r, 0.82179) = 0.320061r^{0.17821} - 0.491357 > 0$ for all $r \ge 186$. Now,

$$g(r, 0.75) = (3 \cdot 2^{-2.25} + 3 \cdot 2^{-0.75} - 7 \cdot 2^{-1.5})r + 2^{-1.5}r^{0.25} + 2^{-0.5} - 2^{0.25}r^{0.25} + 2^{-0.5}r^{0.25} + 2^{-0.5}r^{0.$$

so that,

$$\frac{d}{dr}g(r, 0.75) = 3 \cdot 2^{-2.25} + 3 \cdot 2^{-0.75} - 7 \cdot 2^{-1.5} + 0.25 \cdot 2^{-1.5}r^{-0.75} < 0.$$

$$\Leftrightarrow r > 1.66175.$$

Hence, $g(r, 0.75) \leq g(2, 0.75) = -0.182434$ for all $r \geq 2$. By the Intermediate Value Theorem, there exists $\lambda = \lambda(r) \in (0.75, \delta^*)$ with $g(r, \lambda) = 0$ for all $r \geq 186$. Since $f(r, k, \delta) = g(r, \delta)(0 \leq k \leq 6)$, there exists $\lambda = \lambda(r) \in (0.75, \delta^*)$ with $g(r, \lambda) = 0$ for all $n \geq 1303$. Consequently, $C(n) \neq \phi$ for all $n \geq 1303$.

By the completeness of the reals,

$$\gamma(n) = \inf C(n)$$

exists for all $n \ge 1303$. Since $C(n) \subseteq B(n)$,

$$\gamma(n) \in [\beta(n), \ 0.82179] \subseteq [\beta, 0.82179] \tag{10}$$

for all $n \ge 1303$.

In [13], $\gamma(n)$ was determined for $10 \le n \le 20$. Its existence for $n \ge 21$ was not established. We found that $0.85096 = \gamma(19) \le \gamma(n) \le \gamma(n) \le \gamma(12) = 0.918330$ for $10 \le n \le 20$; several of the trees were chemical trees. We conjectured that $\gamma(n) \approx 0.9$. From (9), we see that this conjecture was incorrect: $\gamma(n)$ exists and $\gamma(n) \le 0.82179$ for at least all $n \ge 1303$.

Unfortunately, our methods do not show that $\lim_{n\to\infty} \gamma(n)$ exists. We conjecture that the limit does exist.

3. Chemical trees

For $n \ge 2$, let

 $A^{\text{chem}}(n) = \{\delta \in (0, 2) : \exists R_{-\delta}(T_n) > R_{-\delta}(P_n), \text{ chemical tree } T_n \neq P_n\},\$ $B^{\text{chem}}(n) = \{\delta \in (0, 2) : \exists R_{-\delta}(T_n) \ge R_{-\delta}(P_n), \text{ chemical tree } T_n \neq P_n\},\$ $C^{\text{chem}}(n) = \{\delta \in (0, 2) : \exists R_{-\delta}(T_n) = R_{-\delta}(P_n), \text{ chemical tree } T_n \neq P_n\}.\$

By their definition, $A^{\text{chem}}(n)$, $C^{\text{chem}}(n) = B^{\text{chem}}(n) - A^{\text{chem}}(n) \subseteq B^{\text{chem}}(n)$. We note that $T_{3,k}(1 \le k \le 6)$ of theorem 7 is a chemical tree of order 21 + k with $R_{-1}(T_{3,k}) > R_{-1}(P_{21+k})$. Hence, $1 \in A^{\text{chem}}(n) \subseteq B^{\text{chem}}(n)$ for all $n \ge 22$. From theorem 9,

$$[0.8292, 2) \subseteq A^{\operatorname{chem}}(n) \subseteq B^{\operatorname{chem}}(n)$$

for all $n \ge 15000$. By Hu et al. [10],

$$A^{\text{chem}}(n), B^{\text{chem}}(n), C^{\text{chem}}(n) \subseteq (0.5, 2) \quad \text{for all } n \ge 7.$$
(11)

By the completeness the real numbers,

$$\alpha^{\text{chem}}(n) = \inf A^{\text{chem}}(n) \text{ and } \beta^{\text{chem}}(n) = \inf B^{\text{chem}}(n)$$

exist for all $n \ge 22$. From their definitions, $\alpha^{\text{chem}}(n) \ge \max\{\alpha(n), \beta^{\text{chem}}(n)\} \ge \min\{\alpha(n), \beta^{\text{chem}}(n)\} \ge \beta(n)$.

As noted above, $T_{3,k} \in (1 \le k \le 6)$ is a chemical tree of order 21 + k with $R_{-1}(T_{3,k})R_{-1}(P_{21+k})$. Since, the tree $T_{n+1} = T_n + vw$ in the proof of theorem 1 is a chemical tree if the tree T_n is a chemical tree, the analogs of theorems 1 and 4 and corollaries 2, 3, 5, and 6 for chemical trees immediately follow. We merely state the results below noting that we have used remark 10(1) in corollaries 17 and 20.

Theorem 15.
$$1 \in A^{\text{chem}}(n) \subseteq A^{\text{chem}}(n+1)$$
 for all $n \ge 22$.

Corollary 16.
$$\alpha^{\text{chem}}(n) \ge \alpha^{\text{chem}}(n+1)$$
 for all $n \ge 22$.

Corollary 17. $\lim_{n\to\infty} \alpha^{\text{chem}}(n) = \alpha^{\text{chem}}$ exists and $\alpha^{\text{chem}} \in [0.5, 0.826077]$.

Theorem 18. $1 \in B^{\text{chem}}(n) \subseteq B^{\text{chem}}(n+1)$ for $n \ge 22$.

Corollary 19. $\beta^{\text{chem}}(n) \ge \beta^{\text{chem}}(n+1)$ for all $n \ge 22$.

Corollary 20. $\lim_{n\to\infty} \beta^{\text{chem}}(n) = \beta^{\text{chem}}$ exists and $\beta^{\text{chem}} \in [0.5, 0.826077]$.

Necessarily, $\beta^{\text{chem}} \leq \alpha^{\text{chem}}$.

We next show that $C^{\text{chem}}(n) \neq \phi$ for all $n \ge 15000$.

Theorem 21. For all $n \ge 15,000$, there exists $\lambda(n) \in C^{\text{chem}}(n) \cap [0.75, 0.8292]$.

Proof. Let n = 3r + s with $0 \le s \le 2 \le r$. With the chemical trees and functions of theorem 9,

$$e(r,s,\delta) \leqslant \frac{r}{9^{\delta}} + \frac{r}{6^{\delta}} + \frac{r}{2^{\delta}} - \frac{3r-5}{4^{\delta}} = \frac{r\{(4/9)^{\delta} + (2/3)^{\delta} + 2^{\delta} - 3 + 5/r\}}{4^{\delta}} = h(r,\delta).$$

Let $i(r) = (4/9)^{0.75} + (2/3)^{0.75} + 2^{0.75} - 3 + 5/r$. Then i(r) is a decreasing function of r and I(192) = -0.0100465... Hence, e(r, s, 0.75) < 0 for all $r \ge 192$. From the proof of Theorem 9, e(r, s, 0.8292) > 0 for all $r \ge 5000, 2 \ge s \ge 0, \delta \in (0.8292, 2]$. By the Intermediate Value Theorem, there exists $\lambda = \lambda(r) \in (0.75, 0.8292)$ with $e(r, s, \lambda) = 0$ for all $r \ge 5000, 2 \ge s \ge 0$. Consequently, $C^{\text{chem}}(n) \ne \phi$ for all $n \ge 15000$.

By the completeness of the reals,

$$\gamma^{\rm chem}(n) = inf C^{\rm chem}(n)$$

exists for all $n \ge 15,000$. Since $C^{\text{chem}}(n) \subseteq B^{\text{chem}}(n) \subseteq B(n)$,

$$\gamma^{\text{chem}}(n) \in [\beta^{\text{chem}}(n), 0.8292] \subseteq [\beta^{\text{chem}}, 0.8292] \subseteq [0.5, 0.8292]$$

for all $n \ge 15000$.

In [13], $\gamma^{\text{chem}}(n)$ was found for $10 \le n \le 17$. Its existence for $n \ge 18$ was not established. We found that $0.86594 = \gamma^{\text{chem}}(16) \le \gamma^{\text{chem}}(n) \le \gamma^{\text{chem}}(12) = 0.918330$ for $10 \le n \le 17$ and conjectured that $\gamma^{\text{chem}}(n) \approx 0.9$. From (6), we see that this conjecture was incorrect: $\gamma^{\text{chem}}(n)$ exists for at least all $n \ge 15000$ and $\gamma^{\text{chem}}(n) \le 0.826077 + \varepsilon$.

The values of $-\alpha^{\text{chem}}$ and $-\beta^{\text{chem}}$ are important, since they are measures of when $R_{-\delta}$ ceases to be an acceptable index (1 or 2) of branching of chemical trees. We have some confidence in the following conjecture.

Conjecture 22. $-\alpha_{chem} = -\beta_{chem} \approx -0.8$.

If this conjecture is true, then the natural choice of -0.5 by Randić was rather fortuitous.

Again, our methods do not show that $\lim_{n\to\infty} \gamma^{\text{chem}}(n)$ exists. We conjecture that the limit does exist however.

43

4. Conclusion

We list several questions that we find interesting as follows:

- (1) Prove or disprove the conjectures $-\alpha = -\beta$ and $-\alpha^{chem} = -\beta^{chem}$.
- (2) Find any of the values of $-\alpha$, $-\beta$, $-\alpha^{chem}$ or $-\beta^{chem}$.
- (3) Improve the bounds $-\alpha, -\beta \in [-0.82179, -0.5]$ and $-\alpha^{\text{chem}}, -\beta^{\text{chem}} \in [-0.826077, -0.5]$; slight improvements of the lower bounds might be made.
- (4) Prove or disprove that $\lim_{n\to\infty} \gamma(n)$ and $\lim_{n\to\infty} \gamma^{\text{chem}}(n)$ exist.
- [1] If either $\lim_{n\to \inf t} \gamma(n)$ or $\lim_{n\to\infty} \gamma^{\text{chem}}(n)$ exist, find the value of the limit.
- [2] Improve the bounds $\gamma(n) \in [0.5, 0.82179]$ and $\gamma^{\text{chem}}(n) \in [0.5, 0.826077]$ $(n \ge 5000)$.

References

- [1] I. Gutman and M. Randić, Chem. Phys. Lett. 47 (1977) 15.
- [2] E. Ruch and I. Gutman, J. Comb. Inf. Syst. Sci. 4 (1979) 285.
- [3] S. H. Bertz, Discrete. Appl. Math. 19 (1988) 65.
- [4] D. H. Rouvray, Discrete. Appl. Math. 19 (1988) 317.
- [5] D. Bonchev, J. Mol. Struct. (Theochem) 336 (1995) 137.
- [6] M. Randić, J. Math. Chem. 24 (1998) 345.
- [7] A. Perdih, Indian J. Chem. 42A (2003) 1246.
- [8] M. Randić, J. Am. Chem. Soc. 97 (1975) 6609.
- [9] X. Li and I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors (Univ. Kragujevac, Kragujevac, 2006).
- [10] Y. Hu, X. Li and Y. Yuan, MATCH Commun. Math. Comput. Chem. 52 (2004) 129.
- [11] Y. Hu, X. Li and Y. Yuan, MATCH Commun. Math. Comput. Chem. 52 (2004) 119.
- [12] L. H. Clark and J. W. Moon, Ars Comb. 54 (2000) 223.
- [13] I. Gutman, M. Lepović, D. Vidović and L. H. Clark, Indian J. Chem. 41A (2002) 457.